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plotted as a function of (z –z”)/a for the values ka = 9.0

and 6/2a = 0.010. Even for this rather dissipative guide

the improvement is seen to be slight. The as>-mptotic

value of A(m ) approached as (z —zO)/a—> ~ is indicated

by the arrow at the lower right. In !iig. 2 the ratio of the

two components of the excitation ~,, (zo) = Q., p are

plotted in the complex plane with (z — ~o) /a as a paraln -

eter for the same values of km and ~/2u. For short

lengths of guide the ratio A is increased by a factor of

about 5 if the reflected waves are also optimally acl-

justed, i.e., .$[= 21V= 4 modes (two waves propagating

in the +Z and two in the —z direction) are employed.

The asymptotic value of A has been computed for two

and three modes propagating in the +Z direction for

several values of ka. There are listed in Table I.
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Further Considerations on FabryJ?erot

Type Resonators*

WILLLMYI CULSHAW~, SENIOR MEMBER, IRE

SummarrJ-An integral equation valid for Fabry-Perot type
resonators with reflectors of arbitrary curvature and spacing is de-

rived, and equations for the planar, confocalj and spherical geometries
are considered further. A numerical iteration method is used to solve

the equations, and the properties of the various solutions for the dif-
ferent kernels are discussed. Results show that the confocal type has
the lowest diffraction loss, and that the losses in the planar- and
spherical-type geometries are identical, as are the normal mode
field distributions over the reflectors, apart from a change in sign of

the phase angle. Variational methods are applied to give results for

the eigenvalues of the planar geometry with great facility, particularly
for cases where the eigenvalues are closely spaced. Some potential

uses and the respective merits of the resonators are briefly men-

tioned.

1. INTRODUCTION

F

REE-SPACE resonators, analogous to the optical

Fabry-Perof- interferometer, continue to play :L

dominant role in measurements and physical de-

vices for very short microwaves, and also in the new

devices for producing coherent light [1 ]– [4]. Previous

work has discussed the application of this interferometer

to millimeter wavelengths [5], [6], an important result

being that coupling to such resonators could be effected

by a whole series, or grating, of coupling holes over the

area of the metallic reflector. Such a method can obvi-

ously be applied to reflectors of arbitrary shape [7], and

is most useful for very short microwaves where optical

methods, such as multilaver dielectric films, are not easy
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to appl>’. The planar type of reflector system, due to

the absence of mode degeneracy, possesses some ad-

vantages in routine measurements of w~velength and

dielectric constants [8]. Diffraction losses, though

larger for ~iven dimensions than those of the ~OnfO~al-

t~-pe resonator [9], can still be made small at the shorter

wavelengths, and their effect on measurements reduced.

However, for a given wavelength and reflector size, such

losses do limit the Q value obtainable, and for some pur-

poses such as filter applications, ancl threshold condit-

ions in lasers, the confocal type may be preferable.

However, the planar geometry, though more critical in

adjustment and in the degree of flatness required,

readily permits single-mode operation, and potentially

gives a kmger power output than the confocal.

one of the difficulties in evaluating the qualit}- of

these free-space resonators is that of diffraction. This

leads to diffraction losses and to phase changes which

differ slightly from those corresponding to plane wave

propagation. The application of integral equations for

the solution of such problems was indicated by Goubau

and Schwering in their work on the guided propagation

of electromagnetic wave beams [10], [11]. Fox and Li

[12] also considered various resonator types, and set up

the integral equations using the Huygens-Kirchhoff cfif -

fraction theory. Numerical solutions for the eigenvalues

and eigenfunctions, or field distribution, were obtained

by computing the steady state reached after a large

number of bounces between the reflectors. Boyd and

Gordon [13 ] also considered the confocal I-ype resonator

in some detail. This arrangement is somewhat unique
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in that the corresponding integral equation can be solved

in closed form, the eigenvalues and eigenfunctions being

expressible in terms of the radial and angular wave

functions in prolate spheroidal coordinates. It is found

in all cases that such resonators possess a set of normal

modes corresponding to the eigenvalues and eigen-

functions of the appropriate integral equation. For

rectangular geometry such modes may be designated as

TEIVI~.g, as in waveguide terminology. The eigenvalue

of a given mode determines the attenuation and phase

change occurring per transit due to diffraction.

We present here some further considerations on the

application of integral equations to such resonators.

The integral equation for a general type of free-space

resonator with spherical reflectors is derived, from

which the appropriate equations for planar, confocal

and spherical geometries may be deduced. The proper-

ties of the kernels involved in the integral equations are

discussed, and numerical solutions are derived by a

numerical iteration method, and by a variational

method. Previous work [7] on a focused spherical reso-

nator is extended, and interesting relations between the

fields and eigenvalues of the planar and spherical geome-

tries are nlade evident.

II. lNTEGRM. EQ(ATIONS FOR FREESP~CE RESON~TOIW

The integral equations for the field distribution over

the reflectors were derived for the planar and confocal

geometries [12 ], [13]. Here these equations and similar

ones for other geometries will be obtained by the Fourier

transform method. Such methods can be used to con-

sider the vector nature of the problem [14] and are also

instructive. However, the present discussion will be

limited to a scalar solution, since for laser applications

the apertures used will be large in relation to the wave-

length.

Consider the planar Fabry-Perot resonator with the

arrangement shown in Fig. 1. Assuming a distribution

of electric field Et= E(xl, yJ over the plane z = O, then

the radiated angular spectrum of plane waves is given by

where a and b are the dimensions of the reflectors, and d

is the spacing between them. This form utilizes the rela-

tion between the steady-state fields given by

~(x, y, d) = I&(x,, YI) (4)

where K is a constant, or eigenvalue, and represents the

attenuation and phase change per transit between the

reflectors. The derivation of this and other equations to

follow assumes that A/a<<l, or the reflector dimensions

are large compared with the wavelength, and also that

[(~.’ + %’)/2k] [(x’+ y’)/2d] << 27r (5)

which reduces to the relation az/k?<<d2/a~.

I

IY

k
0 d z

E(XI,Y1) E(x, y,d)

Fig, l—Planar Fabry-I’erot resonator

YI /

Fig. 2—Convex-type resonator,

Referring to Fig. 2 the integral equation for a reso-

nator with spherical reflectors of radius R separated by

a distance d, ma~- now be deduced from (3). Thus on

g(k!., l?,) = 1,’27 ./YE(xl, yl)e’(~~’’+~~~’)d~ldyl,

ancl the field at the position x, y, d becomes

E(.v, y, d) = l/27r Ssg(kz, ku) e–~@z’l+~J ~l+~.d)dkzdku

reflection at z = d the field undergoes a total phase

(1) change given by the factor exp [ –jk(X2+Y~)/R]. Sub-

stituting this result into (4), which gives the relationship

between the fields at z = O and z = d, and using (3), we

obtain after some reduction the general result

Here k., k,,, k, are the rectangular components of the

propagation vector k of magnitude 27r/h, the discussion where

being limited to rectangular geometry. Substituting (1)
F = (1 + d/R)(%’ + y,’ + x’ + y’) – 2XX, – 2yy,. (7)

into (2) and integrating over the variables kz, ku, the

relation between the electric fields at z = O and z = d is For R= ~, or planar reflectors, (7) reduces to (3).
thus determined by the integral equation [12] When R = – d, or a con focal reflector system, (6) reduces

K~(.t, y)
to the integral equation
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valid for this geometry. If 1?= —d, ‘2, or a spherical

resonator, (7) reduces to

The confocal and spherical resonator types are shown in

Figs. 3 (a) and 3 (b). ire shall consider these e{luations

in solne detail later; similar equations can be derived for

other types of geometr>-. The discussion is restricted

here to the determination of the integral equations for

the fields over the reflectors, but b>- a conlpletely anal-

ogous procedure the integral equation for the plane

wale spectra radiated by the reflectors could be deter-

mined. In any event, the solutions for angular spectri~

of the modes are given by the Fourier transforms of the

eigenfunctions, or field distributions, obtained by solv-

ing the integral equations in the field representation.

Y’ ‘

0 z REFLECTOR RADIUS = d z;d

\ /

(a)

Y

A 2 REFLECTOR RAOIUS : d,2 z,d

//!

(b)

Fig. 3—(a) Confocal resonator. (b) Spllerif<ll reso]uit[jr.

11 I. SOLUTIONS OF THE INTEGR.\L EQI-.kTIONS

.4. Getzeral Remarks

.~ few pertinent remarks on the type of integral equa-

tion encountered in the free-space resonator problem are

in order at this point. These will be limited to those

important in our discussion; more complete treatments

are available in the literature [15 ]— [1 7 ]. The equation

sI//(.Y) = xc ‘K(.T,s)+(s)d.s,,
where the kernel K(.v, s) is continuous over

a ~x<b and a <s~b, or if the double

bounded, i.e.,

bb

Jfl A-2(.T, S) I d~ ds < CL
“ (,

(10)

the domain

integral is

(11)

where c1 is a constant, will be termed a Iine.lr, homogene-

ous equation of the Fredholm type. Subject to this con-

dition, the equation will possess solutions ~,, (x), or eigen -

functions, only for certain discrete values of the paranle-

ter k,, the eigenvaIues. The limits a and b are assumecl

real and finite, but the parameter h, and the functions

1,(x), and K(.Y, s) may be real or complex quantities

.l kernel satisfying the equation K-(s, x) = A“(.T, .s),

where the bar denotes complex conjugate, is termed

Herlnitian. The eigenvalues are then all real, and the

eigenfunctions are orthogonal in the Hermitian sense,

ZIiz. ,

f “--

1>

+m(J*,( (.Y)(L$ == o w # H. (12)
,,

‘1’hey can be normalized and form a colnplete set of

orthonormal functions in terms of which an arbitrary

function can be expanded.

If K’(.s, x) = K(x, s), the kernel is symmetric. ‘l’he

eigenvalues are not real, unless the kernel is real, and the

eigenfunctions are only orthogonal in the non-Hermitian

sense, viz.,

sb

im(”x)l//n(.L?)d% = o m # n. (13)
a

They do not form a complete orthonormal set of

functions.

If the kernel is neither symmetric, nor Hermitian, the

equation

(14)

is called the Hermitian a(ljoint problem. As indicated,

the eigenvalues are the complex conjugates of those of

( 10). Also if’ ~,, (.r) and c&(x) are eigenfunctions of (10)

and (14) then

sb

Jay,, = () m # n, (15)
,,

and this relation may be employed to evaluate the co-

efficients in the expansion of those functions which can

be expressed in terms of the eigenfunctions +,,(x). The

functions +,,, and +~ are usually termed biorthoganal

functions.

lVhen A“(s, .Y) = K(x, s) the Hermitian ad joint equ:~-

tion (14) reduces to the complex conjugate of (10), and

+,, (x) =7,, (x). Various other properties of the solutions

may also be derived by utilizing the symmetry of the

eigenfunctions. Thus the kernel of (8) for the confocal

resonator is symmetric, and the Hermitian ad joint

equation for even eigenfunctions reduces again to (8).

The conjugate complex eigenfunctions v;(v) are thus

also solutions of (8) and may be combined with IJn(x) to

give real eigenfunctions and real eigenvalues applicable

to this geometry [13]. A similar result is obtained by

considering the odd eigenfunctions together with the

Herlnitizm adjoint of (8).
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For finite limits a and b, the eigenvalues k. of (10) are

discrete, but for infinite limits the equation may possess

a continuous range of eigenvalues. This corresponds to

the diminishing difference between the eigenvalues for

our resonators as their lateral dimensions become very

large compared with the wavelength, and diffraction

losses for the various modes or eigenfunctions become

very small. The kernels of the integral equations for the

resonators discussed here are continuous and quadrati-

cally integrable in the sense of (11). Discrete eigen -

values and corresponding eigenfunctions, or modes of

the electric field over the reflectors thus exist, and solu-

tions may be sought by numerical or other methods.

A numerical iterative method will be used to determine

solutions of the resonator equations. However, when the

reflector dimensions become very large in relation to the

wavelength, convergence difficulties arise since the

eigenvalues become nearly equal in value. For the larger

reflector dimensions variational methods can be used

with advantage to derive the eigenvalues, using asymp-

totic waveguide modes or other suitable orthonormal

functions for the mode distributions over the reflectors.

B. Solutions by Numerical Integration

In this method the eigenvalues and eigenfunctions are

determined approximately as the solutions of the set of

n Iinear equations

4(X,) = Ae i D,K(w, .l%)+(xk), i=l,2,3 . . ..n. (16)>
k=l

Here K(x,, x~) =Ki~ is the value of the kernel when

x = x%, and s = xL, and DL is a weighting coefficient de-

pending on the formula used in numerical integration.

It is more expedient to adopt an iteration method of

solution [18 ], using an initial approximation for the

eigenfunction, and writing (16) in matrix form. The

iteration process will eventually yield the eigenfunction

and eigenvalue KOfor the dominant mode of the resona-

tor. Convergence is determined by the ratio of KI, the

next lower eigenvalue, to KO, and will become S1OW for

apertures large in relation to the wavelength.

1) Confocal Resonator: Substitute X= x(k/d) 1/’,

Y= y(k/d) 1/2, and similarly for xl, yl, and put K,= –j

exp (jkd)K, where the exponent represents phase changes

due to plane-wave propagation between the reflectors,

then (8) for the confocal resonator becomes

/c, E(x, v)

1“0“n .Xo=l/27r E(X,, Y,)e~(xx1+yy1)6?x,dY, (17)
—%-0 —x0

where

XO = a(k/d) 112, Ya = b(k/d)l/’.

Assume the field is separable, _E?(X, Y)= EI(X)E,( Y),

and K.= KIK2, then although in general we must assume

both E(X) and K are complex for a complex kernel, in

this particular case we can show that with K1= KC+jK,,

the equation for E(X) is given by

s

.xo
I(GE(X) = (2/7r) l/z cOS (XX,) E(XJdXl (18)

o

for even modes, and

s-z-o
K8~(.~) ,= (2/~)1/2 sin (XXl)E(.Xl)dXl (19)

o

for odd modes. Similar equations hold for E( Y), here we

consider only E(X), corresponding to the solution for

the infinite strip.

The kernels of (18) and (19) are real and symmetric,

and hence Hermitian. The eigenvalues of these equa-

tions will all be real, and as already anticipated in

Section III-A, the eigenfunctions will also be real. This

leads to either real or pure imaginary eigenvalues for

the modes, the reflector surface being one of constant

phase. Since no mode-dependent phase term appears in

the eigenvalues, as also noted by Boyd and Gordon [13],

this resonator is highly degenerate, i.e., a large number

of modes with the same wavelength will resonate at an\-

given confocal spacing. This may not be serious with an

external source as in transmission applications of the

resonator, but with internal sources, as in the gas laser,

difficulties will arise if laser oscillation in a single mode

is desired, since diffraction losses, given by 1 — I K12, are

also very small for this resonator and resonances in

many higher TEMmng rnocfes are readily obtained.

Solutions of (18) and (19) can also be found by ex-

panding the kernels in a series of orthogonal functions,

but will be derived hereby numerical iteration. Consider

XO = 1, and five equally spaced points, k= (b –a)/n = ~,

then the matrix expression [IZ,k ] [D,8ik ] corresponding

to (18) is readily determined using, say Simpson’s rule

[15], and becomes the operator on the column vector

[E]. Assuming initially that [E] = {1, 1, 1, 1, 1 } , we

obtain, after three iterations, the result

[K,,] [D,Lk] [E] = 11.38{ 1,0.99,0.96,0.91, 0.85}. (2o)

The eigenvalue 11.38 is equal to 12 K1(7i_/2) 1/2, and the

maximum of the normalized even mode is at the center

of the aperture. This result gives the field distribution

over the reflectors and the attenuation per pass for the

dominant TEMoo~ mode of the rectangular confocal

resonator for the value of XO = (2r/Xd) ] /% = 1. Similar

results are obtained for the odd modes from (19).

Table I shows values of KG and K, for two values of Xo,

together with results taken from Boyd and Gordon

[13]. The agreement is quite close. Figs. 4(a) and 4(b)

show the field distributions over the confocal reflectors

as compared with similar results from Fox and Li [12]

for circular confocal reflectors. This method of solution

is thus relatively simple and accurate for the smaller

values of XO. For larger values of a2/Ad, a larger number

of intervals must be taken, the convergence becomes

slow, and a programmed computer becomes necessary.
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TABLE I

VALUES OF x, MYD . . THE LA~GIZST EIGWW~LUR FOR ‘rm I~VEN
AIiD ODD MODES OF THE RECTANGULAR CONFOCAL RESONATOR

—
x-o a~lhd Kc K, K——.

1 0.159 0.7565 0.252j (ref. [13~
~ 0.637 0 9979 0.956j 0.9979 0 9539

however, be applied except that the matrices will now

be complex. The appropriate set of linear equations now

becomes

(K. + jl(.) [E,(”r,) + jfi,(”t’,)]

= (1/7r) ’/’ ~ (Kr + jfc,) [E,(x,,)+ j&(x,)]
k=l

i=lj2,3, . . ..n (22)

\

a,
\\

\ \ s\
(a)

t“ti%
0 02 04 06 08 10

~la OR Y/a

(b]

Fig. 4—(a) Amplitude distribution across rectangular- confocal re-
flectors for TEMoo mode. Curves 2 and 4, for coufocal spherical
mirrors after ref. [12], are shown for comparison. (b) Amplitude
distribution across rectangular confocal reflectors for ‘r’EM,”
mode. Curves 2 and 4, for confocal spherical mirrors after ref.
[12], are shown for comparison.

2) Planar Resonator: By a similar reduction (3) for

this resonator becomes

where X= x(k/2d) lIZ. There is a similar equation for

E( Y). The kernel is again complex, symmetric, and non-

Hermitian. The fields E(-X), and eigenvalues must be

assumed complex, and no further reduction as in (18)

and (19) is possible. Similar numerical procedures can,

where A“, and h“, are the values of the real and imaginary

parts of the kernel for values xi and x~. Solutions can

now be effected by the numerical iteration method, and

will give complex eigenvalues and eigenfunctions for the

various modes of the resonator. The complex field d is-

tribution means that the reflector is not a constant

phase surface for the modes, while the complex eigen-

value shows that phase changes given by tan $ = K,/KG

occur in addition to those corresponding to plane-wave

propagation between the reflectors. This means that the

modes are no longer degenerate but will resonate at dif-

ferent reflector spacings d. In addition to mode selection

in lasers, such modes may be seen by recording the

transmitted fringes in a high-quality millimeter wave

Fabry-Perot interferometer. Fig. 5 shows a record ing

made on an improved millimeter wave interferometer

[6], the smaller sharp responses to the right of ithe

dominant one are due to other normal modes of the

resonator. .Actually these mode responses were much

larger initially and were reduced by adjustments on the

interferometer. The interferometer will resonate at dif-

ferent spacings for the different modes into which the

incident field may be resolved, and the transmission

through the interferometer can be controlled by adjust-

ments on the reflector alignment and radiator spacings.

DISTANCEd BETWEENREFLECTORSINCREASING~

Fig. 5—Millimeter wave interferometer fringes. Small respol)ses to
right of main response (sometimes much larger) indicate reso-
nances due to higher-order modes of the planar interferometer.
tVavelength 6.28 mm. Brass reflectors 12 in square. Spacing :E=10
in.

3) Spherical OY Focwsed Resonator: As in Section

I II-B, 2), (9) for the spherical resonator may be written

in the form

sx0
m(x) = (1/7r)l/2 E(A”Jeifx+XIJ’dXl, (,23)

–x-”
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with a similar equation for E( Y). The eigenvalues and

eigenfunctions of this equation are related to those for

the planar geometry. Consider the Hermitian ad joint

of (21) ; since the kernel is symmetric, this is equivalent

to taking the complex conjugate, viz.,

K E(x) = (1/7T)1/~s-E(xl)d (-~–~’ )2(LYI. (24)

For even or odd eigenfunctions (24) may be written as

+K ~(.y) = (1/r)l/2 s---E(Xl)e/(-y+x’)2 d.Yl, (25)

where the minus sign applies to the odd solutions. com-

paring (23) and (25), since the kernels are now identical,

the solutions for the spherical geometry are determined

by the complex conjugates of those for the planw-

geometry. The eigenvalues for the spherical geometry

are the complex conjugates of those for the planar

geometry. The attenuation or diffraction loss per transit

is thus identical for the two geometries, and since dif-

fraction losses in the planar type are greater than in an

equivalent confocal type [13], the spherical resonator

cannot have lower losses than a confocal resonator of

equivalent dimensions. The modal fields over the spheri-

cal reflectors are given by the conjugate complex of

those over the planar reflectors, and are thus non-

cfegenerate.

eigenfunction, and the smallest stationary value, or

largest value Kl, corresponds to the dominant mode ~l(x)

of the resonator. Other eigenfunctions may then be used

to determine KZ, K3, etc., Where we have K1 > KS > KZ and

so on. Since the ratio is stationary with respect to the

eigenfunctions ~,,(x), approximations to these functions

will give good results for the eigenvalues.

Eq. (26) will now be applied to determine the eigen-

values of (3) applicable to infinite strip plane reflectors,

and from Section II I-B also applicable to the spherical

geometry. Some results for this resonator, derived using

the same variational approach, have also been given by

Tang [21 ]. Using the results of Fox and Li [12], and

conventional waveguide theory, we represent the eigen-

functions for the even or symmetric modes by

*(”V) = l/ti~ Cos lzT”2 -Vllz, IL = 1,3, 5, etc. (27)

Thus from (3) and (26) the eigenvalues for the planar

strip geometry are given by

> ?Ns-s-
.,~fi~=~1(7r/4)1:/2:]u/2–42N–+ 2AT

. ~–J(./2) (~-–~-ljz Cos .I.y Cos Axldxdxl (28)

where ~= (a’/~d), .-1 = njr/2~2N, and ~ = (~N) l/~x/a

similarly for Xl, and we have omitted the geometrical

phase factor exp ( –jkd) in (3). The integration of (28)

is laborious but straightforward, and yields the result

3---H&+i3[F(2- X%)+2’(Z%)-’(-+x%)]
exp [j(7r/4 + +)]

%.crI =

[(-- 1L

)(-- )1+F 2~2N + —— +’ 2d2.T – ~= –
——

242LV }
l/7rv’2/N exp[–j(2.3T~ + @ – mr/2] sin (2.1T7r – n~/2) , (29)

242.1’

C. I’ariational Method

The labor involved in the numerical solution of the

type of integral equation encountered here is quite large,

particularly for large values of the parameter a~/id.

This may not be serious if a computer is used, but in

general some variational approach is preferable for such

cases. Particularly so since the eigenvalues are all that

are usually required, the field distributions having ap-

proached asymptotic values very similar to those in

metallic waveguides or other orthonormal set of func-

tions. Such asymptotic values can be used in a varia-

tional formula for the eigenvalues. Thus, if the kernel

K(.x, s) in (10) is symmetric, the eigenvalues are given

by the stationary values of the ratio [19], [20].

J
b

[IJ(.v)] ‘dx

h. = l/K = ‘+—-—

Ssb
(26)

K(x, s)~(.v)+(s)dds
a.

The stationary values of the ratio occur when IJ(x) is an

where

f

L

‘(x) = e–;(*/2)t~ dt
o

is the Fresnel integral, and @= n%r/16N.

Eigenvalues for the even modes may be determined

for various values of N by substituting n =1, 3, 5, etc.,

into (29). Results for n = 1 corresponding to the domi-

nant, or lowest loss mode of the resonator, are shown in

Table II, together with similar results deduced from

Fox and Li [12]. Similar results for I ~1I are also given

by Tang [21] for these modes, though the corresponding

formula quoted there is incorrect.

We see that the agreement is quite good particularly

for the higher values of N where the variational method

is expected to yield good results. The eigenvalues for

this resonator, as indicated before, are complex, and the

additional phase relative to the geometrical term

exp ( —jkd) contained in (29) yields the frequency

separation or positions of resonance for the various

modes of the planar type resonator. As shown in Section

“
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TABLIZ II

131 GENYALUNSK1 FCJ~ THE DOMINANT Mo~~ o~~ PL~N~J< [~FINrIIi
STRIP RESO~ATOR DEDUCED BY THII vARIArlONAL ~IETHOD

N KI IK, I
—— - -J!!...-

1 (1,5919-0 .6973j 0.9144 0.911
0.6655-0. 7045j 0.9692

;
0.96’2

0.6982-0. 7068j 0.9891 0.986
0.6994-0. 7071j 0.9946

:
0.992

0 7015 -0.7071.7 0.996 0.995

t’alues l~,l*are value. estimated from Foxand I.i [121.

TABLE 111

EIGENVAI.UES., FOR ‘THE LOWEST-ORDER ODD kloDE OF APLANAK
INFINITE STRIP RESONATOR DEDUCED BY THE \’ARJATIONAL iVkrnoD

N KX IK,I ].,1”—~1>-0.2746-0 .5666i 0.6297 0.6782
i 0. 5+40-0. 6812] 0.8717 0.8485
~ 0. 6484–0 7025j 0.9559 0.9327
3 0.6752-0 .7053j 0.9763 0.9675
4 0.6858-0. 7061j 0.9845 ().9747

10
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tlve to geometrical phase shift) vs N = a2/hd for infinite strip
reflectors.

III-B, 3), such results are also applicable to the spheri-

cal resonator. Values of the phase shift per transit de-

duced from (29) for n = 1 and various values of N are

sho~vn in Fig. 6 where they are also compared with

similar results from Fox and Li [12 ]. .4gain the vari:l-

tional method gives good results for the higher values

of N, and results for the higher nlocles II = 3, 5, etc., can

also be readil>- deduced from (29).

Similarly the eigenvalues for the odd modes may be

deduced from (26) by substituting the approximate

eigenfunctions

The result is that (29) also determines the eigenvalues

KOM for the odd modes when n =2, 4, 6, etc. Table 11 I

shows the results obtained for ~?, the first-order odd

mode. The agreement is again quite reasonable and

would become closer at still larger values of N. The at-

tenuation per transit is higher for this mode particu-

larly at the lower values of N, and the variational

method cannot be expected to yield as accurate a result,

for a given value of N, as for the dominant mode. Re-

sults deduced from (29) are thus more accurate for all
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Fig. 7—Moduli of eigenvalues IKIdetermined by variational method.
Curves 1 and 2 lowest-order even and odd modes, respectively.

modes tlt the higher values of N, and for the same value

of N the error will increase with increase in n. In plrac-

tice the value of N will be around 20 or more and such

limitations to the variational method will not be serious.

The accuracy for the lower values of N could in an!

event be ilnproved if necessary by adopting a Rayleigh-

Rit.z procedure [20] using a combination of eigen-

functions to represent the field distribution over the

reflectors.

Fig. 6 also shows the phase angles deduced for the

lower-order odd mode, and Fig. 7 shows the results for

I KI for a number of even and odd modes. From (29) the

argument of K approaches the value ~~ = n%ri’16N for

large values of N. This corresponds to an effective

change &l in the resonator spacing given by

?id = u%,’32.\r, (31)

and using values of N commonly encountered in the

He-Ne planar reflector type laser, the frequent> sepa-

ration between the dominant and lowest-order odd mode

mLLy be deduced. Thus assuming d = 100 cm, 2a = 1 cm,

and X = 1. 153K then N@25. For the modes in question

92= 1, and 2, respectively, and hence froln (31) and

the equation

for the resonator we obtain 6V = 1.12 Mc. This agrees,

very well with actually observed beat frequencies in the

He-Ne laser [22].
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Such a variational method can also be applied to other

types of resonators by a suitable choice of an ortho-

normal set of functions. For the confocal geometry the

Hermite polynomials weighted by a Gaussian function

are suitable. Such an approach gives the variational

result that for the confocal resonator

1 4T 47
~), = @(./4) —

Js
_e’’’”Hn (“v) Hn (al)

@r -J; .4.

. ~–~zl&~%lZdxdxl (33)

where H. are Hermite polynomials, and c = v’27rN. This

equation may be separated again into two equations for

the even and odd modes, and the eigenvalues are either

real or pure imaginary quantities. Direct integration of

(33) for finite limits ti~ appears difficult. For infinite

limits I KO\ = 1 as it should. However, when <27rN is

large, the difference between the results for finite and

infinite limits becomes very small, due to the effect of

the Gaussian factors, and it can be surmised, as is al-

ready known [13 ], that the confocal has very low losses

for nominal values of N.

IV. CONCLTTSIONS

Equations analogous to (6) could be used to study the

precision to which planar reflectors should be normal to

the axis, or to consider the effects of variations in the

radius of curvature of the spherical reflectors used in the

confocal or spherical geometries. The numerical itera-

tion method used here is very convenient for the smaller

values of N, and for resonators with large loss factors

such as a convex type of resonator. Here the converg-

ence is rapid and reduces the number of iterations re-

quired to establish the results. The result that the eigen-

functions and eigenvalues of the spherical resonator are

the complex conjugates of those for the planar resonator

is interesting and potentially of some importance in

laser applications as regards the ease of reflector adjust-

ment and absence of mode degeneracy in such spherical

resonators.

The confocal-type resonator is highly degenerate

since the eigenvalues are either real or pure imaginary,

the reflector surface being a constant phase surface for

all modes. Hence a large number of TEIVI~n * modes of

the same wavelength, given by the equation [13]

.4d=(2q+l+?n+?2)A (34)

can resonate at the same spacing d. If, in addition, the

exciting wavelength can var>-, due to say the Doppler

broadened line in a He-Ne gas laser, then quite complex

distributions of fields over the reflectors are possible due

to the presence of many simultaneously oscillating

modes [23 ]. This feature is characteristic of the confocal

resonator because diffraction losses in this resonator are

orders of magnitude smaller than in an equivalent

planar type of resonator [13], and become comparable

for all modes at values of N used in the laser. It also

follows that the spherical resonator cannot have lower

diffraction losses than the equivalent confocal type.

Such normal modes of free-space resonators are

readily seen in the He-Ne gas laser, particularly in the

planar-type resonator, since the laser oscillation will

build LIP in the mode having the lowest diffraction loss.

Various mode patterns can be produced by suitable ad-

justments on the reflector alignment [23]. They can

also be seen in transmission measurements with a milli-

meter-wave planar resonator [6], since the distribution

of the incident field will in general contain normal mode

distributions of the resonator, and these will be trans-

mitted with varying efficiency at different resonant

spacings d. In the past, such effects have been reduced

by suitable adjustments on the interferometer, but some

further study of them would be useful. Similar remarks

are also applicable to the use of millimeter-wave con-

focal resonators, where the effects on measurements of

mode degeneracy, and nonconfocal spacing need investi-

gation.

The efficacy of variational methods is very great, as

evidenced by the results obtained on the planar resona-

tor, when we consider that computations involving some

300 transits between the reflectors were necessary to

obtain the results given by Fox and Li [12]. .1 still

larger number of transits would be required for higher

values of N, whereas the essential results are contained

in a single formula for all modes., The method used be-

comes more accurate the larger the value of N. The

phase of the eigenvalue is also determined directly, and

is immediately applicable to mode separation problems,

and also to the correction of wavelength measurements

made on millimeter-wave interferometers. By choosing

a more suitable approximation ~(x) for the eigen-

function at lower values of N, or by a combination of

eigenfunctions as in the Rayleigh-Ritz method [221, the

accuracy of the variational approach could be improved

considerably. This also applies generall>, but for the

values of N used in present lasers the relatively simpler

method adopted here appears adequate.
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SteppedJmpedance Transformers and Filter Prototypes*

LEO YOUNG~, SENIOR MEMBER, IRE

Summary—Quarter-wave transformers are widely used to ob-

tain an impedance match within a specified tolerance between two
lines of different characteristic impedances over a specified fre-
quency band. This paper gives design formulas and extensive tables
of designs, most of which were especially derived so that an inte-
grated account could be presented for the first time. Numerous

examples are given. Only homogeneous, synchronous transformers
and filters are included in this paper, but a short bibliography on re-

lated topics is appended.
The theory is also applied to band-pass filters, by showing how

to convert quarter-wave transformers into half-wave filter prototypes.
The theoretical and numerical results presented are applicable to the

design of impedance transformers, dhect-coupled cavity filters,

short-line low-pass filters, optical antireflection coatings and inter-
ference filters, acoustical transformers, branch-guide dkectional
couplers, TEM-mode coupled-transmission-line directional couplers,
and other circuits. These applications have been or will be dealt with

in separate papers; this paper gives the basic theory and some of the
numerical data required for these applications.

1. INTRODLTCTION

T
HE OBJECTIVE of this paperl is to extend and

consolidate the theory of the quarter-wave trans-

former, with two applications in mind: the first

application is as an impedance-matching device or,

literally, transformer; the second is as a prototype cir-

cuit, which shall serve as the basis for the design of

various filters and directional couplers.

* Received April 9, 1962. This work was sponsored by the LT. S.
Army Signal Research and Development Laboratory, Fort N!om
mouth, N. J., under contract No. D.+ 36-039 SC 87398.

~ Stanford Research Institute,. Menlo Park, Calif.
1.1 more complete treatment M given in [1 ], on which this paper

is based.

This paper is organized into nine parts, with the fol-

lowing purpose and content:

Section I is introductory. It also discusses applica-

tions, and gives a number of definitions.

Sections II and III deal with the performance char-

acteristics of quarter-wave transformers and half-wave

filters. In these parts the designer will find what can be

done, not how to do it.

Sections IV to IX tell how to design quarter-wave

transformers and half-wave filters. If simple general

design formulas were available, solvable by nothing

more complicated than a slide-rule, these parts would be

much shorter.

Section IV gives exact formulas and numerical solu-

tions for Chebyshev and maximally flat transformers of

up to four sections.

Section V gives exact numerical solutions for maxi-

mally flat (but not Chebyshev) transformers of up to

eight sections.

Section VI gives a first-order theory [or Cheb ysh ev

and maximally flat transformers of up to eight sections,

with explicit formulas and numerical tables. [t also

gives a general first-order formula, and refers to existing

numerical tables published elsewhere which are suitable

for up to 39 sections, and for relatively wide (but not

narrow) bandwidths.

Section VII presents a modified first-order theory, ac-

curate for larger transformer ratios than can be design[ed

by the (unmodified) first-order theory of Section VI

Sections VII I and IX apply primarily to prototypes


