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plotted as a function of (z—z)/a for the values kg =9.0
and 6/2a¢=0.010. Even {or this rather dissipative guide
the improvement is seen to be slight. The asymptotic
value of N« ) approached as (z—zn)/a— = is indicated
by the arrow at the lower right. In Fig. 2 the ratio of the
two components of the excitation W,(z,) =0, . are
plotted in the complex plane with (s—z0)/a as a paramn-
eter for the same values of ke and §/2¢. For short
lengths of guide the ratio M is increased by a factor of
about 5 if the reflected waves are also optimally ad-
justed, 7.c., M =2N =4 modes (two waves propagating
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in the 4z and two in the —z direction) are employed.
The asymptotic value of N has been computed for two

and three modes propagating in the —+z direction for

several values of ka. There are listed in Table I.
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Further Considerations on Fabry-Perot
Type Resonators

WILLIAM CULSHAWS{, SENIOR MEMBER, IRE

Summary—An integral equation valid for Fabry-Perot type
resonators with reflectors of arbitrary curvature and spacing is de-
rived, and equations for the planar, confocal, and spherical geometries
are considered further. A numerical iteration method is used to solve
the equations, and the properties of the various solutions for the dif-
ferent kernels are discussed. Results show that the confocal type has
the lowest diffraction loss, and that the losses in the planar- and
spherical-type geometries are identical, as are the normal mode
field distributions over the reflectors, apart from a change in sign of
the phase angle. Variational methods are applied to give results for
the eigenvalues of the planar geometry with great facility, particularly
for cases where the eigenvalues are closely spaced. Some potential
uses and the respective merits of the resonators are briefly men-
tioned.

I. INTRODUCTION

REE-SPACE resonators, analogous to the optical
FFabry—Perot interferometer, continue to play a

dominant role in measurements and physical de-
vices for very short microwaves, and also in the new
devices for producing coherent light [1]-[4]. Previous
work has discussed the application of this interferometer
to millimeter wavelengths [S], [6], an important result
being that coupling to such resonators could be effected
by a whole series, or grating, of coupling holes over the
area of the metallic reflector. Such a method can obvi-
ously be applied to reflectors of arbitrary shape [7], and
is most useful for very short microwaves where optical
methods, such as multilayer dielectric films, are not easy
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to apply. The planar type of reflector system, due to
the absence of mode degeneracy, possesses some ad-
vantages in routine measurements of wavelength and
dielectric constants [8]. Diffraction losses, though
larger for given dimensions than those of the confocal-
type resonator [0], can still be made small at the shorter
wavelengths, and their effect on measurements reduced.
However, for a given wavelength and reflector size, such
losses do limit the Q value obtainable, and for some pur-
poses such as filter applications, and threshold condi-
tions in lasers, the confocal type may be preferable.
However, the planar geometry, though more critical in
adjustment and in the degree of flatness required,
readily permits single-mode operation, and potentially
gives a larger power output than the confocal.

One of the dithculties in evaluating the quality of
these free-space resonators is that of diffraction. This
leads to diffraction losses and to phase changes which
differ slightly from those corresponding to plane wave
propagation. The application of integral equations for
the solution of such problems was indicated by Goubau
and Schwering in their work on the guided propagation
of electromagnetic wave beams [10], [11]. Fox and Li
[12] also considered various resonator types, and set up
the integral equations using the Huygens-Kirchhoff dif-
fraction theory. Numerical solutions for the eigenvalues
and eigenfunctions, or field distribution, were obtained
by computing the steady state reached after a large
number of bounces between the reflectors. Boyd and
Gordon [13] also considered the confocal type resonator
in some detail. This arrangement is somewhat unique
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in that the corresponding integral equation can be solved
in closed form, the eigenvalues and eigenfunctions being
expressible in terms of the radial and angular wave
functions in prolate spheroidal coordinates. It is found
in all cases that such resonators possess a set of normal
modes corresponding to the eigenvalues and eigen-
functions of the appropriate integral equation. For
rectangular geometry such modes may be designated as
TEM .4, as in waveguide terminology. The eigenvalue
of a given mode determines the attenuation and phase
change occurring per transit due to diffraction.

We present here some further considerations on the
application of integral equations to such resonators.
The integral equation for a general type of free-space
resonator with spherical reflectors is derived, from
which the appropriate equations for planar, confocal
and spherical geometries may be deduced. The proper-
ties of the kernels involved in the integral equations are
discussed, and numerical solutions are derived by a
numerical iteration method, and by a wvarlational
method. Previous work [7] on a focused spherical reso-
nator is extended, and interesting relations between the
fields and eigenvalues of the planar and spherical geome-
tries are made evident.

11. INTEGRAL EQUATIONS FOR FREE-SPACE RESONATORS

The integral equations for the field distribution over
the reflectors were derived for the planar and confocal
geometries [12], [13]. Here these equations and similar
ones for other geometries will be obtained by the Fourier
transform method. Such methods can be used to con-
sider the vector nature of the problem [14] and are also
instructive. However, the present discussion will be
limited to a scalar solution, since for laser applications
the apertures used will be large in relation to the wave-
length.

Consider the planar Fabry-Perot resonator with the
arrangement shown in Fig. 1. Assuming a distribution
of electric field E,= E(x;, y1) over the plane z=0, then
the radiated angular spectrum of plane waves is given by

g(kzy ky) = 1/27 ff E(Xl, :V1)61(k‘””+kw1>dx1dy1, (1)
and the field at the position x, v, d becomes
E(x,v,d) = 1/2x ff g(ky, ky)e? Genrthynth:ddp dk, (2)

Here k., k,, k. are the rectangular components of the
propagation vector k of magnitude 27 /\, the discussion
being limited to rectangular geometry. Substituting (1)
into (2) and integrating over the variables k., k,, the
relation between the electric fields at 2=0 and z=d is
thus determined by the integral equation [12]

KE(3, 9)
]'e-—jkd

b @
f f E(xy, yy) etk lma) - (n=n"112dg g gy, 3)
}\d —b —n .
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where @ and b are the dimensions of the reflectors, and d
is the spacing between them. This form utilizes the rela-
tion between the steady-state fields given by

E(x3 Y, d) = KE(?C], yl) (4)

where « is a constant, or eigenvalue, and represents the
attenuation and phase change per transit between the
reflectors. The derivation of this and other equations to
follow assumes that A/a<<1, or the reflector dimensions
are large compared with the wavelength, and also that

[(k? + ) /2k][(a? + 37 /2d] < 2 (3)

which reduces to the relation a?/Nd<<d?/a®.

Y

X,Y),0) (x,y,d)
/g///k%b}
- — V

E(x,y,d)

E(xpy,)

Fig. 1—Planar Fabrv-Perot resonator.

Fig. 2—Convex-type resonator,

Referring to Fig. 2 the integral equation for a reso-
nator with spherical reflectors of radius R separated by
a distance ¢, may now be deduced from (3). Thus on
reflection at z=d the field undergoes a total phase
change given by the factor exp [—jk(x2+y%)/R]. Sub-
stituting this result into (4), which gives the relationship
between the fields at 2=0 and z=4d, and using (3), we
obtain after some reduction the general result

je—ikd

E(x,y) =
kE(x, y) d

ff E(xl,yl)e—JkF<“'“'y'7~’1)/2ddx1dy1 (6)

where
F=(1+d/R)(x® + y.° + 2* + %) — 2wx, — 2991 (7)

For R= «, or planar reflectors, (7) reduces to (3).
When R= —d, or a confocal reflector system, (6) reduces
to the integral equation

ie—ikd

E(x,y) =
kE(x, y) 7

f E(xl, yl)e—]k(.rxl'h/yl)/ddxldy] (8)
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valid for this geometry. If R=—d 2, or a spherical
resonator, (7) reduces to

. Jek : 2 1o
,\B(x‘ )y) = Tf E(xl, yl)ezk[(vﬂw) + ity ]/“'ld.\‘ldyl (9)

The confocal and spherical resonator types are shown in
Figs. 3(a) and 3(b). We shall consider these equations
in some detail later; similar equations can be derived for
other types of geometry. The discussion is restricted
here to the determination of the integral equations for
the fields over the reflectors, but by a completely anal-
ogous procedure the integral equation for the plane
wave spectra radiated by the reflectors could be deter-
mined. In any event, the solutions for angular spectra
of the modes are given by the Fourier transforms of the
eigenfunctions, or field distributions, obtained by solv-
ing the integral equations in the field representation.

! ( )
X¥1:0
R4 k (x,y,d)
X
r
3 7  REFLECTOR RADIUS = d z3d

(a)

(x,,Y,,0)
7 hed] X k

r

o& Z REFLECTOR RADIUS = d/2 2=d

(b)

Fig. 3—(a) Confocal resonator. (b) Spherical resonator.

{x,y,d) .

[11. SoruTIONS OF THE INTEGRAL EQUATIONS
A. General Remarks
A few pertinent remarks on the type of integral equa-
tion encountered in the free-space resonator problem are
in order at this point. These will be limited to those
important in our discussion; more complete treatments
are available in the literature [15]-[17]. The equation

b
V() = A f K(x, s)(s)ds (10)

where the kernel K(x, s) is continuous over the domain
a<x<b and a<s<bh, or i the double integral is
bounded, 7.c.,

fnbfwbl Kz, s)| dvds < ¢,

(11)
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where ¢; is a constant, will be termed a linear, homogene-
ous equation of the Fredholm type. Subject to this con-
dition, the equation will possess solutions ¥,.(x), or eigen-
functions, only for certain discrete values of the parame-
ter A,, the eigenvalues. The limits @ and 6 are assumed
real and finite, but the parameter A, and the functions
¥, (x), and K(x, s) may be real or complex quantities

A kernel satisfving the equation K(s, x)=K(&, s),
where the bar denotes complex conjugate, is termed
Hermitian. The eigenvalues are then all real, and the
eigenfunctions are orthogonal in the Hermitian sense,

113,

wm o . (12)

b
f Yo ()W, () dx = 0
They can be normalized and form a complete set of
orthonormal functions in terms of which an arbitrary
function can be expanded.

If K(s, x)=K(x, s), the kernel is symmetric. The
eigenvalues are not real, unless the kernel is real, and the
eigenfunctions are only orthogonal in the non-Hermitian
sense, 11z.,

b
f V()P (0)dx = 0 m # n. (13}
a
They do not form a complete orthonormal set of
functions.

If the kernel is neither symmetric, nor Hermitian, the
equation

b4 o
olx) = X,,f K(s, x)p(s)ds (14)
is called the Hermitian adjoint problem. As indicated,
the eigenvalues are the complex conjugates of those of

(10). Also if ¥, (x) and ¢.(x) are eigenfunctions of (10)
and (14) then

b
f GulDP.(x) =0 m £, (15)
and this relation may be employed to evaluate the co-
efficients in the expansion of those functions which can
be expressed in terms of the eigenfunctions ¢,,(x). The
functions ., and ¢, are usually termed biorthogonal
functions.

When K(s, x)=K(x, s) the Hermitian adjoint equa-
tion (14) reduces to the complex conjugate of (10), and
$,.(x) =v,(x). Various other properties of the solutions
may also be derived by utilizing the symmetrv of the
eigenfunctions. Thus the kernel of (8) for the confocal
resonator is symmetric, and the Hermitian adjoint
equation for even eigenfunctions reduces again to (8).
The conjugate complex eigenfunctions ¢z(x) are thus
also solutions of (8) and may be combined with y,(x) to
give real eigenfunctions and real eigenvalues applicable
to this geometry [13]. A similar result is obtained by
considering the odd eigenfunctions together with the
Hermitian adjoint of (8).
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For finite limits a and b, the eigenvalues A, of (10) are
discrete, but for infinite limits the equation may possess
a continuous range of eigenvalues. This corresponds to
the diminishing difference between the eigenvalues for
our resonators as their lateral dimensions become very
large compared with the wavelength, and diffraction
losses for the various modes or eigenfunctions become
very small, The kernels of the integral equations for the
resonators discussed here are continuous and quadrati-
cally integrable in the sense of (11). Discrete eigen-
values and corresponding eigenfunctions, or modes of
the electric field over the reflectors thus exist, and solu-
tions may be sought by numerical or other methods.
A numerical iterative method will be used to determine
solutions of the resonator equations. However, when the
reflector dimensions become very large in relation to the
wavelength, convergence difficulties arise since the
eigenvalues become nearly equal in value. For the larger
reflector dimensions variational methods can be used
with advantage to derive the eigenvalues, using asymp-
totic waveguide modes or other suitable orthonormal
functions for the mode distributions over the reflectors.

B. Solutions by Numerical Integration

In this method the eigenvalues and eigenfunctions are
determined approximately as the solutions of the set of
# linear equations

ll’(‘/'t’t) = )\e Zn: DkK(xi; Vk)l//(xk), 7= 17 2;37 o, N (16)
k=1

Here K(x,, x:)=K;; is the value of the kernel when
x=x, and s=xy, and Dy is a weighting coefficient de-
pending on the formula used in numerical integration.
It is more expedient to adopt an iteration method of
solution [18], using an initial approximation for the
eigenfunction, and writing (16) in matrix form. The
iteration process will eventually yield the eigenfunction
and eigenvalue «, for the dominant mode of the resona-
tor. Convergence is determined by the ratio of x;, the
next lower eigenvalue, to ke, and will become slow for
apertures large in relation to the wavelength.

1) Confocal Resonator: Substitute X =ux(k/d)?,
Y=vy(k/d)1?, and similarly for xy, 31, and put &,= —j
exp (jkd)k, where the exponent represents phase changes
due to plane-wave propagation between the reflectors,
then (8) for the confocal resonator becomes

E(X, 1)

Yo Xo
=1/27 f f E(Xy, V) XXy yogx,dv,  (17)
—~Yov —X,

where

Xo = a(k/d)2, Vo = b(k/d)12.

Assume the field is separable, E(X, YV)=E(X)E.(Y),
and k.= kiks, then although in general we must assume
both E(X) and « are complex for a complex kernel, in
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this particular case we can show that with k= k,+jx,,
the equation for £(X) is given by

Xo

GE(X) = (2/m)M? f cos (XX)E(XD)dX: (18)

0

for even modes, and

X i
kE(X) = (2/1r)1/2f sin (XX )E(X,)dX, (19)
0
for odd modes. Similar equations hold for E(Y), here we
consider only E(X), corresponding to the solution for
the infinite strip.

The kernels of (18) and (19) are real and symmetric,
and hence Hermitian. The eigenvalues of these equa-
tions will all be real, and as already anticipated in
Section I11-A, the eigenfunctions will also be real. This
leads to either real or pure imaginary eigenvalues for
the modes, the reflector surface being one of constant
phase. Since no mode-dependent phase term appears in
the eigenvalues, as also noted by Boyd and Gordon [13],
this resonator is highly degenerate, <.c., a large number
of modes with the same wavelength will resonate at any
given confocal spacing. This may not be serious with an
external source as in transmission applications of the
resonator, but with internal sources, as in the gas laser,
difficulties will arise if laser oscillation in a single mode
is desired, since diffraction losses, given by 1 — [ K[ 2 are
also very small for this resonator and resonances in
many higher TEM,,,, modes are readily obtained.

Solutions of (18) and (19) can also be found by ex-
panding the kernels in a series of orthogonal functions,
but will be derived here by numerical iteration. Consider
Xy=1, and five equally spaced points, k= (b—a)/n=1,
then the matrix expression [K,;][D.8:x] corresponding
to (18) is readily determined using, say Simpson’s rule
[15], and becomes the operator on the column vector
[E]. Assuming initially that [E]={1, 1, 1, 1, 1}, we
obtain, after three iterations, the result

[K ) [Ds4][E] = 11.38{1,0.99,0.96,0.91,0.85}. (20)

The eigenvalue 11,38 is equal to 12k (w/2)Y2, and the
maximum of the normalized even mode is at the center
of the aperture. This result gives the field distribution
over the reflectors and the attenuation per pass for the
dominant TEMge, mode of the rectangular confocal
resonator for the value of Xo= (27/Ad)"2a=1. Similar
results are obtained for the odd modes from (19).
Table I shows values of k, and , for two values of X,
together with results taken from Boyd and Gordon
[13]. The agreement is quite close. Figs. 4(a) and 4(b)
show the field distributions over the confocal reflectors
as compared with similar results from Fox and Li [12]
for circular confocal reflectors. This method of solution
is thus relatively simple and accurate for the smaller
values of X. For larger values of a2/Nd, a larger number
of intervals must be taken, the convergence becomes
slow, and a programmed computer becomes necessary.
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TABLE 1

VALUES OF K, AND &, THE LARGEST EIGENVALUES FOR THE EVEN
AND 0DD MODES OF THE RECTANGULAR CONFOCAL RESONATOR

Xy \ 112/7\(1’ “ Ke l Ky L K
|
1 0.150 | 0.7565 0.252 | (ref. [13])
2 0.637 0 9979 0.956; | 0.9979 0 9539
i
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Fig. 4—(a) Amplitude distribution across rectangular confocal re-
flectors for TEM o mode. Curves 2 and 4, for confocal spherical
mirrors after ref. [12], are shown for comparison. (b) Amplitude
distribution across rectangular confocal reflectors for TEM;,
mode. Curves 2 and 4, for confocal spherical mirrors after ref.
[12], are shown for comparison.

2) Planar Resonator: By a similar reduction (3) for
this resonator becomes

Xg

KE(X) = (1/m)r2 f R(X)e s F0ix,,  (21)

X,
where X =x(k/2d)Y/%. There is a similar equation for
E(Y). The kernel is again complex, symmetric, and non-
Hermitian. The fields £(X), and eigenvalues must be
assumed complex, and no further reduction as in (18)
- and (19) is possible. Similar numerical procedures can,

Culshaw: Fabry-Perot Type Resonadtors

335

however, be applied except that the matrices will now
be complex. The appropriate set of linear equations now
becomes

(ko + ji) [£.(x) + FE(x))]
= (1/7‘-)]/2 Z (Kr —l— ]K.s) [Er(xk) + ]Eb(xk)]

k=1

(22)

1=1,2,3,--,n

where K, and K, are the values of the real and imaginary
parts of the kernel for values x; and x;. Solutions can
now be effected by the numerical iteration method, and
will give complex eigenvalues and eigenfunctions for the
various modes of the resonator. The complex field dis-
tribution means that the reflector is not a constant
phase surface for the modes, while the complex eigen-
value shows that phase changes given by tan Y =«,/x,
occur in addition to those corresponding to plane-wave
propagation between the reflectors. This means that the
modes are no longer degenerate but will resonate at dif-
ferent reflector spacings d. In addition to mode selection
in lasers, such modes may be seen by recording the
transmitted fringes in a high-quality millimeter wave
Fabry-Perot interferometer. Fig. 5 shows a recording
made on an improved millimeter wave interferometer
[6], the smaller sharp responses to the right of the
dominant one are due to other normal modes of the
resonator. Actually these mode responses were much
larger initially and were reduced by adjustments on the
interferometer. The interferometer will resonate at dif-
ferent spacings for the different modes into which the
incident field may be resolved, and the transmission
through the interferometer can be controlled by adjust-
ments on the reflector alignment and radiator spacings.
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Fig. 5—Millimeter wave interferometer fringes. Small responses to
right of main response (sometimes much larger) indicate reso-
nances due to higher-order modes of the planar interferometer.
\Vavelength 6.28 mm. Brass reflectors 12 in square. Spacing ==10
in.

3) Spherical or Focused Resonator: As in Section
111-B, 2), (9) for the spherical resonator may be written
in the form

Xo
E(X e X+X0' X,

~X,

KE(X) = (1/x)12 (23)
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with a similar equation for E(V). The eigenvalues and
eigenfunctions of this equation are related to those for
the planar geometry. Consider the Hermitian adjoint
of (21); since the kernel is symmetric, this is equivalent
to taking the complex conjugate, viz.,

k B(X) = (1/m)1? f E(X e S-X0%gX . (24)

For even or odd eigenfunctions (24) mayv be written as

i B(X) = (1/m)12 f B(Xer Y, (25)

where the minus sign applies to the odd solutions. Com-
paring (23) and (25), since the kernels are now identical,
the solutions for the spherical geometry are determined
by the complex conjugates of those for the planar
geometry. The eigenvalues for the spherical geometry
are the complex conjugates of those for the planar
geometry. The attenuation or diffraction loss per transit
is thus identical for the two geometries, and since dif-
fraction losses in the planar type are greater than in an
equivalent confocal type [13], the spherical resonator
cannot have lower losses than a confocal resonator of
equivalent dimensions. The modal fields over the spheri-
cal reflectors are given by the conjugate complex of
those over the planar reflectors, and are thus non-
degenerate.

_exp [j(n/4 + ¢)] _<j L)[ ( —
foven = V2 { mr+ 8.V F vy

n

24/2N

. N ¥
+ [F (2\/2N + >+F<2\/2A - WS

C. Variational Method

The labor involved in the numerical solution of the
type of integral equation encountered here is quite large,
particularly for large values of the parameter a?/Ad.
This may not be serious if a computer is used, but in
general some variational approach is preferable for such
cases. Particularly so since the eigenvalues are all that
are usually required, the field distributions having ap-
proached asymptotic values very similar to those in
metallic waveguides or other orthonormal set of func-
tions. Such asymptotic values can be used in a varia-
tional formula for the eigenvalues. Thus, if the kernel
K(x, s5) in (10) is symmetric, the eigenvalues are given
by the stationary values of the ratio [19], [20].

[ e

fabfabK(*‘f’ s ()Y (s)dads

Ae = 1/k = (26)

The stationary values of the ratio occur when ¥(x) is an
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eigenfunction, and the smallest stationaryv value, or
largest value ki, corresponds to the dominant mode ¥, (x)
of the resonator. Other eigenfunctions may then be used
to determine ks, k3, etc., where we have ki > ks> k3 and
so on. Since the ratio is stationary with respect to the
eigenfunctions ¢, (x), approximations to these functions
will give good results for the eigenvalues.

Eq. (26) will now be applied to determine the eigen-
values of (3) applicable to infinite strip plane reflectors,
and from Section II1I-B also applicable to the spherical
geometry. Some results for this resonator, derived using
the same variational approach, have also been given by
Tang [21]. Using the results of Fox and Li [12], and
conventional waveguide theory, we represent the eigen-
functions for the even or symmetric modes by

Y(x) = 1/v/acosnr/2 x/a, (27)

Thus from (3) and (26) the eigenvalues for the planar
strip geometry are given by

n=1,3,5, etc.

veN VAN
k= ei(1r/~1)1’//2A71/2 o
—vVaN

eI FIDX-X0" 008 A X cos AX,dXdX,

VN
(28)

where N=(a?/Nd), d=nm/2+/2N, and x=(2N)'%x/a
similarly for X;, and we have omitted the geometrical
phase factor exp (—jkd) in (3). The integration of (28)
is laborious but straightforward, and yields the result

n n N n
— V4 2F(——=) — F{2v2W S
2\/21\7) + <2\/2‘V> F( VAV A+ 2\/2N>]

' —>] — 1/7v2/N exp[—j(2N7 + ¢ — nw/2] sin @QN# — m/z)} , (29)

where
F(x) zf iy
0

is the Fresnel integral, and ¢ =n2xr/16N.

Eigenvalues for the even modes may be determined
for various values of V by substituting n=1, 3, 5, etc.,
into (29). Results for n=1 corresponding to the domi-
nant, or lowest loss mode of the resonator, are shown in
Table II, together with similar results deduced from
Fox and Li [12]. Similar results for ’ k1| are also given
by Tang [21] for these modes, though the corresponding
formula quoted there is incorrect.

We see that the agreement is quite good particularly
for the higher values of Vwhere the variational method
is expected to yield good results. The eigenvalues for
this resonator, as indicated before, are complex, and the
additional phase relative to the geometrical term
exp (—jkd) contained in (29) yields the frequency
separation or positions of resonance for the various
modes of the planar type resonator. As shown in Section
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TABLE 11
EIGENVALUES x; FOR THE DOMINANT MoDE OF A PLANAR [NFINITE
StriP RESONATOR DEDUCED BY THE VARIATIONAL METHOD

N K1 la | k g [*
¥ 0.5919-0.6973; 0.9144 0.911
i 0.6655-0.70457 0.9692 0.962
2 0.6982-0.7068] 0.9891 0.986
3 0.6994-0.7071; 0.9946 0.992
4 0 7015-0.70715 0.996 0.995

Values | |* are values estimated from Fox and Li [12].
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Fig. 6—Variational results on phase shift per transit (leading rela-
tive to geometrical phase shift) vs N=a2/Ad for infinite strip
reflectors.

I11-B, 3), such results are also applicable to the spheri-
cal resonator. Values of the phase shift per transit de-
duced from (29) for n=1 and various values of IV are
shown in Fig. 6 where they are also compared with
similar results from Fox and Li [12]. Again the varia-
tional method gives good results for the higher values
of N, and results for the higher miodes n=23, 5, etc., can
also be readily deduced from (29).

Similarly the eigenvalues for the odd modes may be
deduced from (26) by substituting the approximate
eigenfunctions

v(x) = 1/vasin nn/2 x/a, n=244 6 etc. (30)

The result is that (29) also determines the eigenvalues
Koaa for the odd modes when n=2, 4, 6, etc. Table III
shows the results obtained for ks, the first-order odd
mode. The agreement is again quite reasonable and
would become closer at still larger values of V. The at-
tenuation per transit is higher for this mode particu-
larly at the lower values of N, and the variational
method cannot be expected to vield as accurate a result,
for a given value of N, as for the dominant mode. Re-
sults deduced from (29) are thus more accurate for all
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TABLE 111

EIGENVALUES k2 FOR THE LOWEST-ORDER OpDp Mopg OF A PLANAR
INFINITE STRIP RESONATOR DEDUCED BY THE VARTATIONAL METHOD

N &y 2] [ia | *

¥ 0.2746-0.56667 0.6297 0.6782
1 0.5410-0.6812; 0.8717 0.8185
2 0.6484-0.70257 0.9559 0.9327
3 0.6752-0.70535 0.9763 0.9675
4 0.6858-0.7061; 0.9845 0.9747

Values |ks|* arc values estimated from Fox and 1.i [12].
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Fig. 7—Moduli of eigenvalues || determined by variational method.
Curves 1 and 2 lowest-order even and odd modes, respectively.

modes at the higher values of N, and for the same value
of N the error will increase with increase in n. In prac-
tice the value of NV will be around 20 or more and such
limitations to the variational method will not be serious.
The accuracy for the lower values of NV could in anv
event be improved if necessary by adopting a Rayleigh-
Ritz procedure [20] using a combination of eigen-
functions to represent the field distribution over the
reflectors.

Fig. 6 also shows the phase angles deduced for the
lower-order odd mode, and Fig. 7 shows the results for
x| for a number of even and odd modes. From (29) the
argument of x approaches the value ¢gu=n*r/16N for
large values of N. This corresponds to an effective
change 6d in the resonator spacing given by

od = u®\,/32.\,

(31)

and using values of N commonly encountered in the
He-Ne planar reflector type laser, the frequency sepa-
ration between the dominant and lowest-order odd mode
may be deduced. Thus assuming d=100 cm, 2¢=1 cmm,
and A=1.153u then N=25. For the modes in question
n=1, and 2, respectively, and hence from (31) and
the equation

oviv =

— od/d (32)

for the resonator we obtain dv=1.12 Mc. This agrees
very well with actually observed beat frequencies in the

He-Ne laser [22].
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Such a variational method can also be applied to other
types of resonators by a suitable choice of an ortho-
normal set of functions. For the confocal geometry the
Hermite polynomials weighted by a Gaussian function
are suitable. Such an approach gives the variational
result that for the confocal resonator

1 Ve Ve
kn = e!TIY V3 f\/_f fef*”lHn(x)Hn(xl)
T NeV Ve

2 2
cemr Pe 2 xd xy

(33)

where H, are Hermite polynomials, and ¢=+/27N. This
equation may be separated again into two equations for
the even and odd modes, and the eigenvalues are either
real or pure imaginary quantities. Direct integration of
(33) for finite limits ~/¢ appears difficult. For infinite
limits |K0] =1 as it should. However, when /27N is
large, the difference between the results for finite and
infinite limits becomes very small, due to the effect of
the Gaussian factors, and it can be surmised, as is al-
ready known [13], that the confocal has very low losses
for nominal values of V.

1V. CoNcCLUSIONS

Equations analogous to (6) could be used to study the
precision to which planar reflectors should be normal to
the axis, or to consider the effects of variations in the
radius of curvature of the spherical reflectors used in the
confocal or spherical geometries. The numerical itera-
tion method used here is very convenient for the smaller
values of N, and for resonators with large loss factors
such as a convex type of resonator. Here the converg-
ence is rapid and reduces the number of iterations re-
quired to establish the results. The result that the eigen-
functions and eigenvalues of the spherical resonator are
the complex conjugates of those for the planar resonator
is interesting and potentially of some importance in
laser applications as regards the ease of reflector adjust-
ment and absence of mode degeneracy in such spherical
resonators.

The confocal-type resonator is highly degenerate
since the eigenvalues are either real or pure imaginary,
the reflector surface being a constant phase surface for
all modes. Hence a large number of TEM,,, modes of
the same wavelength, given by the equation [13]

1d = (2¢ + 1+ m + n)A (34)

can resonate at the same spacing d. If, in addition, the
exciting wavelength can vary, due to say the Doppler
broadened line in a He-Ne gas laser, then quite complex
distributions of fields over the reflectors are possible due
to the presence of many simultaneously oscillating
modes [23]. This feature is characteristic of the confocal
resonator because diffraction losses in this resonator are
orders of magnitude smaller than in an equivalent
planar type of resonator [13], and become comparable
for all modes at values of N used in the laser. It also
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follows that the spherical resonator cannot have lower
diffraction losses than the equivalent confocal type.

Such normal modes of free-space resonators are
readily seen in the He-Ne gas laser, particularly in the
planar-type resonator, since the laser oscillation will
build up in the mode having the lowest diffraction loss.
Various mode patterns can be produced by suitable ad-
justments on the reflector alignment [23]. They can
also be seen in transmission measurements with a milli-
meter-wave planar resonator [6], since the distribution
of the incident field will in general contain normal mode
distributions of the resonator, and these will be trans-
mitted with varying efficiency at different resonant
spacings d. In the past, such effects have been reduced
by suitable adjustments on the interferometer, but some
further study of them would be useful. Similar remarks
are also applicable to the use of millimeter-wave con-
focal resonators, where the effects on measurements of
mode degeneracy, and nonconfocal spacing need investi-
gation.

The efficacy of variational methods is very great, as
evidenced by the results obtained on the planar resona-
tor, when we consider that computations involving some
300 transits between the reflectors were necessary to
obtain the results given by Fox and Li [12]. A still
larger number of transits would be required for higher
values of N, whereas the essential results are contained
in a single formula for all modes.- The method used be-
comes more accurate the larger the value of N. The
phase of the eigenvalue is also determined directly, and
is immediately applicable to mode separation problems,
and also to the correction of wavelength measurements
made on millimeter-wave interferometers. By choosing
a more suitable approximation ¥(x) for the eigen-
function at lower values of N, or by a combination of
eigenfunctions as in the Rayleigh-Ritz method [22], the
accuracy of the variational approach could be improved
considerably. This also applies generally, but for the
values of NV used in present lasers the relatively simpler
method adopted here appears adequate.
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Stepped-Impedance Transformers and Filter Prototypes*

LEO YOUNGTY, SENIOR MEMBER, IRE

Summary—Quarter-wave transformers are widely used to ob-
tain an impedance match within a specified tolerance between two
lines of different characteristic impedances over a specified fre-
quency band. This paper gives design formulas and extensive tables
of designs, most of which were especially derived so that an inte-
grated account could be presented for the first time. Numerous
examples are given. Only homogeneous, synchronous transformers
and filters are included in this paper, but a short bibliography on re-
lated topics is appended.

The theory is also applied to band-pass filters, by showing how
to convert quarter-wave transformers into half-wave filter prototypes.
The theoretical and numerical results presented are applicable to the
design of impedance transformers, direct~coupled cavity filters,
short-line low-pass filters, optical antireflection coatings and inter-
ference filters, acoustical transformers, branch-guide directional
couplers, TEM-mode coupled-transmission-line directional couplers,
and other circuits. These applications have been or will be dealt with
in separate papers; this paper gives the basic theory and some of the
numerical data required for these applications.

I. INTRODUCTION

HE OBJECTIVE of this paper! is to extend and
Tconsohdate the theory of the quarter-wave trans-

former, with two applications in mind: the first
application is as an impedance-matching device or,
literally, transformer; the second is as a prototype cir-
cuit, which shall serve as the basis for the design of
various filters and directional couplers.

* Received April 9, 1962. This work was sponsored by the U, S.
Army Signal Research and Development Laboratory, Fort Mon-
mouth, N. J., under contract No. DA 36-039 SC 87398.

T Stanford Research Institute, Menlo Park, Calif.

' A more complete treatment is given in [1], on which this paper
is based.

This paper is organized into nine parts, with the fol-
lowing purpose and content:

Section [ is introductory. It also discusses applica-
tions, and gives a number of definitions.

Sections I1 and III deal with the performance char-
acteristics of quarter-wave transformers and half-wave
filters. In these parts the designer will find what can be
done, not how to do it.

Sections IV to IX tell how to design quarter-wave
transformers and bhalf-wave filters. If simple general
design formulas were available, solvable by nothing
more complicated than a slide-rule, these parts would be
much shorter.

Section IV gives exact formulas and numerical solu-
tions for Chebyshev and maximally flat transformers of
up to four sections.

Section V gives exact numerical solutions for maxi-
mally flat (but not Chebvshev) transformers of up to
eight sections.

Section VI gives a first-order theory for Chebyshev
and maximally flat transtormers of up to eight sections,
with explicit formulas and numerical tables. It also
gives a general first-order formula, and refers to existing
numerical tables published elsewhere which are suitable
for up to 39 sections, and for relatively wide (but not
narrow) bandwidths.

Section VII presents a modified first-order theory, ac-
curate for larger transformer ratios than can be designed
by the (unmodified) first-order theory of Section VI.

Sections VIII and IX apply primarily to prototypes



